Java Program for Matrix Multiplication

Matrix Multiplication

Java program to multiply two matrices has been shown here. Matrix $[A]_{m \times n}$ can be multiplied with matrix $[B]_{p \times q}$, iff $n = p$ i.e. the number of columns of the first matrix should to be equal to the number of rows in the second matrix. The order of the resultant matrix $C$ would be $m \times q$.

Algorithm, pseudocode and time complexity of the program have also been shown below.






1. Algorithm for matrix multiplication


1. Take two matrice $A_{m\times n}$ and $B_{p\times q}$ as input.

2. Declare another matrix $C_{m\times q}$ and initailize it with 0.

3. Check if $n = p$

4. If step [3] is false then display "Matrices can not be multiplied!" and go to step [8]

5. If step [3] is true, then

6. Repeat for each $i \in [0, m - 1]$

6.1. Repeat for each $j \in [0, q - 1]$

6.1.1. Repeat for each $k \in [0, p - 1]$

6.1.1.1. Perform $C[i][j] = C[i][j] + A[i][k] * B[k][j]$

7. Display $C_{m\times q}$ as the resultant matrix.

8. Exit program.




2. Pseudocode for matrix multiplication


Input: Two matrices $A_{m\times n}$ and $B_{p\times q}$

Output: $A * B$

1. Procedure matrixMultiplication($A_{m\times n}$, $B_{p\times q}$):

2. Initialize $C_{m\times q} = 0$

3. If $n == p$:

4. Repeat for each $i \in [0, m-1]$

5. Repeat for each $i \in [0, q-1]$

6. Repeat for each $k \in [0, p-1]$

7. $C_{ij}\leftarrow C_{ij} + A_{ik} * B_{kj}$

8. Return $C_{m\times q}$

9. Else:

10. Return Matrices can not be multiplied!

11. End Procedure





3. Time Complexity for matrix multiplication


Time Complexity: O($n^3$)

Where $n$ is the row and column size of two matrices.




4. Java Program for matrix multiplication

Code has been copied
/****************************************
	   alphabetacoder.com
  Java Program for Matrix Multiplication
*****************************************/

import java.util.Scanner;

class Main {
    public static void main(String args[]) {
        // declare object of Scanner class
        Scanner sc = new Scanner(System.in);

        // declare variables
        int m, n, p, q, i, j, k;
        int A[][] = new int[10][10];
        int B[][] = new int[10][10];
        int C[][] = new int[10][10];

        //take input of the order of first matrix
        System.out.print("Enter the number of row and column of first matrix: ");
        m = sc.nextInt();
        n = sc.nextInt();

        //take input of the first matrix
        System.out.println("Enter the first matrix of order " + m + " x " + n + " = ");
        for (i = 0; i < m; i++)
            for (j = 0; j < n; j++)
                A[i][j] = sc.nextInt();

        //take input of the order of second matrix
        System.out.print("Enter the number of row and column of second matrix: ");
        p = sc.nextInt();
        q = sc.nextInt();

        //take input of the second matrix
        System.out.println("Enter the second matrix of order " + p + " x " + q + " = ");
        for (i = 0; i < p; i++)
            for (j = 0; j < q; j++)
                B[i][j] = sc.nextInt();

        // check if number of columns in first matrix 
        // is same as number of rows in second matrix.
        // If not, then matrices can not be multiplied
        if (n != p)
            System.out.print("\nMatrices can not be multiplied!");
        else {
            // do matrix multiplication
            for (i = 0; i < m; i++) {
                for (j = 0; j < q; j++) {
                    for (k = 0; k < p; k++)
                        C[i][j] += A[i][k] * B[k][j];
                }
            }

            System.out.println("The resultant matrix after multiplication:");
            //display the result
            for (i = 0; i < m; i++) {
                for (j = 0; j < q; j++) {
                    System.out.print(C[i][j] + " ");
                }
                //new  line
                System.out.println("");
            }
        }
    }
}

Output


Enter the number of row and column of first matrix: 2 2

Enter the first matrix of order 2 x 2 =

8 10

6 9

Enter the number of row and column of second matrix: 2 3

Enter the second matrix of order 2 x 3 =

2 7 8

0 4 1

The resultant matrix after multiplication:

16 96 74

12 78 57